學習歷程:
  1. 理解 Martingale (鞅) 的定義
  2. 理解 Stopping Time 的定義
  3. 理解 Optional Stopping Theorem
  4. 應用:Gambling Problem

1 定義 (Martingale)

A random process ${X_n: 0\le n\le \infty}$ is a martingale with respect to the information filteration, $\mathcal{F}_n$, and probability distribution, $P$, if

  1. $\mathbf{E}^P[|X_n|] < \infty$ for all $n\ge 0$.
  2. $\mathbf{E}^P[X_{n+m} | \mathcal{F}_n] = X_n$ for all $n, m\ge 0$.

其中第一點只是技術性的條件,避免 $X_n$ 期望值不存在的情形。

範例 1: Random Walk

Let $S_n := \sum_{i=1}^n X_i$ be a random walk where $X_i$'s are IID with mean $\mu$.

Let $M_n := S_n - n\mu$. Then $M_n$ is a martingale.

範例 2: Martingale Betting Strategy

每一回合你可以選擇下注 $X$ 元,每一回合都有 1/2 機率贏或輸。若贏,則可以額外獲得你下注的金額 $X$ 元。若輸,則你會失去 $X$ 元。

一個 Doubling Strategy 表示:第 $i$ 回合下注 $2^{i-1}$ 元,直到你獲勝為止。

Let $W_n$ denote the total winnings after $n$ coin tosses assuming $W_0=0$. Then $W_n$ is a martingale.

It suffices to show that $\mathbf{E}[W_{n+1}|W_n] = W_n$.

  • If $W_n=1$, then we stop playing the game. So $\mathbf{E}[W_{n+1}|W_n=1] = 1$.
  • If $W_n=-2^n+1$: then we will bet $2^n$ on the $(n+1)^\mathrm{th}$ round so

$\begin{align*} \mathbf{E}[W_{n+1}|W_n=-2^n+1] &= \frac{1}{2}\times 1 + \frac{1}{2}\times (-2^{n+1}+1) \ &= -2^n+1 \end{align*}$

範例 3: Random Walk

If $Z_n=\sum_{i=1}^n X_i$ where $\mathbf{E}[X_i | X_{i-1}, \ldots, X_1] = 0$ for each $i\ge 1$, then ${Z_n: n\ge 1}$ is a martingale.

範例 4: More Random Walk

Let $X_i = U_iY_i$ where ${U_i: i\ge 1}$ are IID, equiprobable $\pm 1$. The $Y_i$ are independent of the $U_i$. Then ${Z_n: n\ge 1}$, where $Z_n = X_1 + \cdots + X_n$ is a martingale. MIT Opencourse Video

  • $Y_i$ 真的沒限制,只要 $U_iY_i$ 期望值是 0 就行了。

範例 5: Product Form Martingale

Let ${X_i: i\ge 1}$ be a sequence of IID unit-mean rv's. Then ${Z_n: n\ge 1}$, where $Z_n = X_1X_2\cdots X_n$, is a martingale.

2 定義 (Stopping Time)

Let $(\mathcal{F}_i)$ be a filter. A random variable $\tau\in {0,1,2,\ldots, }\cup{\infty}$ is a stopping time for the filter $(\mathcal{F}_i)$ if the event ${\tau=i}$ is $\mathcal{F}_i$-measurable.

這句話的意思大概是說 $\tau$ 是一個 random variable, 而且決定 $\tau=i$ 這件事情只由時間 $i$ 以前看到的事實決定。

Optimal Stopping Time Theorem

Let $(X_i)$ be a martingale and $\tau$ be a stopping time with respect to a filter $(\mathcal{F}i)$. Then $\mathbf{E}[X\tau] = \mathbf{E}[X_0]$ holds whenever all following conditions hold:

  1. $\Pr[\tau < \infty] = 1$.
  2. $\mathbf{E}[|X_\tau|] < \infty$.
  3. $\mathbf{E}[X_i\mathbb{I}{\set{\tau >i}}] \to 0$ as $i\to \infty$, where $\mathbb{I}{\set{\tau > i}}$ is the indicator of the event $\set{\tau >i}$.

Alternatively (and more pratically), the theorem holds if at least one of the following holds:

  1. $T$ is bounded, that is, $\Pr[\tau\le k] = 1$ for some $k\in\mathbb{N}$.
  2. $|X_k|$ is bounded for all $k\in\mathbb{N}$.
  3. $\mathbf{E}[\tau] < \infty$ and $\mathbf{E}[|X_i-X_{i-1}|\ |\ \mathcal{F}_i] \le c$ for all $i$ and some constant $c$.

引理:Stopped Martingale

Let ${X_n: n\ge 0}$ be a Martingale, and $\tau$ is a stopping time w.r.t. ${X_n}$. Then the stopped process $\set{\overline{X}_n: n\ge 0}$ is a Martingale too, where

$$ \begin{align*} \overline{X}n &= \begin{cases} X_n & \text{if } \tau > n,\ X{\tau} & \text{if } \tau \le n. \end{cases} \ &= X_{n\land \tau} \end{align*} $$

$n\land \tau$ is defined to be $\min(n, \tau)$.

如果我們有 $\Pr[\tau < \infty] = 1$,那麼就會保證 with probability 1, $$ \lim_{n\to\infty} \overline{X}n = X\tau. $$

應用

醉漢走路問題:公正硬幣

每一次丟一枚公正硬幣,移動位置 $+1$ 或 $-1$。 給定兩個結束位置 $a < 0 < b$,踩到 $a$ (停損) 或 $b$ (獲利) 就停止。

目標 1: 計算獲勝機率

目標 2: 計算停止期望步數

Let $Y_i = S_i^2 - i$, then ${Y_i}$ is martingale.

不公正的硬幣

移動位置 $\Pr(\xi_i=+1) = p$, $\Pr(\xi_i = -1) = 1-p = q$。 給定兩個結束位置 $a < 0 < b$,踩到 $a$ (停損) 或 $b$ (獲利) 就停止。

定義 $S_n = \xi_1+\cdots+\xi_n$、以及 $\phi(x) = \left(\frac{1-p}{p}\right)^x$。則 $\phi(S_n)$ 是一個 martingale。

Doob's 萬用 martingale 構造法

Let $F$ be any finite random variable, and ${X_i}$ is a random process. Then $Z_i = \mathbf{E}[F\ |\ X_0, X_1, \ldots, X_i]$ is a martingale.

參考資料

本文由卡恩(tmt514)撰寫。 本站使用 GasbyJS 搭配 Bulma 製作,其原始碼為 MIT 授權。 網站內容除了題源以外,若無特別說明皆為創用 CC-BY-NC-SA 4.0 授權。 題源部份若有版權爭議還請與我聯繫,感恩。