最大無權匹配演算法 Maximum Cardinality Matching

演算法文獻圖的種類演算法類型時間複雜度備註
Edmonds 19651一般圖確定性\(O(mn^2)\)
Witzgall-Zahn 19652一般圖確定性\(O(mn^2)\)
Balinski 19693一般圖確定性\(O(n^3)\)
Gabow 19764一般圖確定性\(O(n^3)\)
Lawler 1976一般圖確定性\(O(mn)\)
Karzanov 1976一般圖確定性\(O(mn)\)
Hopcroft-Karp 19715二分圖確定性\(O(m\sqrt{n})\)
Dinitz-Karzanov 19736二分圖確定性\(O(m\sqrt{n})\)Max Flow
Micali-Vazirani 1980一般圖確定性\(O(m\sqrt{n})\)Vazirani 2014
Gabow-Tarjan 1991一般圖確定性\(O(m\sqrt{n})\)
Feder-Motwani 19957二分圖確定性\(O(m\sqrt{n}/f(n, m))\)
  • \(f(n, m) = \log n / \log (n^2/m)\)

最大帶權匹配演算法 Maximum Weighted Matching

演算法文獻圖的種類演算法類型時間複雜度備註
Kuan 19558二分圖確定性\(O(n^3)\)匈牙利演算法
Fredman-Tarjan 19849二分圖確定性\(O(n(m+n\log n))\)Fibonacci Heaps
Gabow 198510二分圖確定性\(O(n^{3/4}m\log W)\)Scaling
Gabow-Tarjan 198911二分圖確定性\(O(\sqrt{n}m\log(nW))\)
Kao-Lam-Sung-Ting 199912二分圖確定性\(O(\sqrt{n}S/f(n, S/W))\)
  • \(S\) 是所有邊權重總和。\(W\) 是最大整數邊權。
  • \(f(n, m) = \log n / \log (n^2/m)\)

近似最大匹配

演算法文獻圖的種類近似值時間複雜度備註
確定性\(O(m+n\log n)\)

最大帶權完美匹配 Maximum Weighted Perfect Matching

演算法文獻圖的種類近似值時間複雜度備註
確定性\(O(m+n\log n)\)

動態近似匹配 Dynamic Approximate Maximum Matching

演算法文獻圖的種類近似值更新時間 Update Time備註
Ivković-Lloyd 1994一般圖\(2\)均攤 \(O((m+n)^{\sqrt{2}/2})\)無權重
Onak-Rubinfield 2010一般圖\(O(1)\)高機率均攤 \(O(\log^2 n)\)無權重
Gupta-Peng 2012一般圖\(1-\epsilon\)\(O(\sqrt{m}\epsilon^{-2})\)無權重
Gupta-Peng 2012一般圖\(1/3-\epsilon\)\(O(\sqrt{m}\epsilon^{-3}\log W)\)帶權
Gupta-Peng 2012一般圖\(1-\epsilon\)\(O(\sqrt{m}\epsilon^{-2-O(1/\epsilon)}\log W)\)帶權
Berstein-Stein 2016一般圖\(2/3-\epsilon\)\(O(m^{1/4}\epsilon^{-2.5})\)帶權

參考資料

1

Jack Edmonds, Path, Trees, and Flowers, Canadian Journal of Mathematics, 1965.

13

Jack Edmonds, Maximum Matching and a Polyhedron With 0,1-Vertices, Journal of Research of the National Bureau of Standards, Section B: Mathematics and Mathematical Physics, 1965.

2

C. Witzgall and C. T. Zahn Jr, Modification of Edmonds' Maximum Matching Algorithm, Journal of Research of the National Bureau of Standards, Section B: Mathematics and Mathematical Physics, 1965.

3

Balinski, M.L. (1969) Labelling to Obtain a Maximum Matching, in Combinatorial Mathematics and Its Applications. In: Bose, R.C. and Dowling, T.A., Eds., University of North Carolina Press, Chapel Hill, 585-602.

10

H. N. Gabow, Scaling algorithms for network problems, Journal of Computer and System Sciences, 31 (1985), pp. 148–168.

12

Ming-Yang Kao, Tak Wah Lam, Wing-Kin Sung, and Hing-Fung Ting. A Decomposition Theorem for Maximum Weight Bipartite Matchings. J, ACM 2001 and ESA 1999.

8

H. W. Kuan. The Hungarian method for the assignment problem, Naval Research Logistics Quarterly, 2 (1955), pp. 83–97.

9

M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms, Journal of the ACM, 34 (1987), pp. 596–615. FOCS 1984

11

H. N. Gabow and R. E. Tarjan, Faster scaling algorithms for network problems, SIAM Journal on Computing, 18 (1989), pp. 1013–1036. (also STOC 1988)

5

J. E. Hopcroft and R. M. Karp, An \(n^{5/2}\) algorithm for maximum matching in bipartite graphs, SIAM Journal on Computing, 2 (1973), pp. 225–231

7

T. Feder and R. Motwani, Clique partitions, graph compression and speeding-up algorithms, Journal of Computer and System Sciences, 51 (1995), pp. 261–272