最大無權匹配演算法 Maximum Cardinality Matching
演算法文獻 | 時間複雜度 | 備註 | ||
---|---|---|---|---|
Edmonds 19651 | 一般圖 | 確定性 | \(O(mn^2)\) | |
Witzgall-Zahn 19652 | 一般圖 | 確定性 | \(O(mn^2)\) | |
Balinski 19693 | 一般圖 | 確定性 | \(O(n^3)\) | |
Gabow 19764 | 一般圖 | 確定性 | \(O(n^3)\) | |
Lawler 1976 | 一般圖 | 確定性 | \(O(mn)\) | |
Karzanov 1976 | 一般圖 | 確定性 | \(O(mn)\) | |
Hopcroft-Karp 19715 | 二分圖 | 確定性 | \(O(m\sqrt{n})\) | |
Dinitz-Karzanov 19736 | 二分圖 | 確定性 | \(O(m\sqrt{n})\) | Max Flow |
Micali-Vazirani 1980 | 一般圖 | 確定性 | \(O(m\sqrt{n})\) | Vazirani 2014 |
Gabow-Tarjan 1991 | 一般圖 | 確定性 | \(O(m\sqrt{n})\) | |
Feder-Motwani 19957 | 二分圖 | 確定性 | \(O(m\sqrt{n}/f(n, m))\) |
- \(f(n, m) = \log n / \log (n^2/m)\)
最大帶權匹配演算法 Maximum Weighted Matching
演算法文獻 | 時間複雜度 | 備註 | ||
---|---|---|---|---|
Kuan 19558 | 二分圖 | 確定性 | \(O(n^3)\) | 匈牙利演算法 |
Fredman-Tarjan 19849 | 二分圖 | 確定性 | \(O(n(m+n\log n))\) | Fibonacci Heaps |
Gabow 198510 | 二分圖 | 確定性 | \(O(n^{3/4}m\log W)\) | Scaling |
Gabow-Tarjan 198911 | 二分圖 | 確定性 | \(O(\sqrt{n}m\log(nW))\) | |
Kao-Lam-Sung-Ting 199912 | 二分圖 | 確定性 | \(O(\sqrt{n}S/f(n, S/W))\) |
- \(S\) 是所有邊權重總和。\(W\) 是最大整數邊權。
- \(f(n, m) = \log n / \log (n^2/m)\)
近似最大匹配
演算法文獻 | 時間複雜度 | 備註 | ||
---|---|---|---|---|
確定性 | \(O(m+n\log n)\) |
最大帶權完美匹配 Maximum Weighted Perfect Matching
演算法文獻 | 時間複雜度 | 備註 | ||
---|---|---|---|---|
確定性 | \(O(m+n\log n)\) |
動態近似匹配 Dynamic Approximate Maximum Matching
演算法文獻 | 更新時間 Update Time | 備註 | ||
---|---|---|---|---|
Ivković-Lloyd 1994 | 一般圖 | \(2\) | 均攤 \(O((m+n)^{\sqrt{2}/2})\) | 無權重 |
Onak-Rubinfield 2010 | 一般圖 | \(O(1)\) | 高機率均攤 \(O(\log^2 n)\) | 無權重 |
Gupta-Peng 2012 | 一般圖 | \(1-\epsilon\) | \(O(\sqrt{m}\epsilon^{-2})\) | 無權重 |
Gupta-Peng 2012 | 一般圖 | \(1/3-\epsilon\) | \(O(\sqrt{m}\epsilon^{-3}\log W)\) | 帶權 |
Gupta-Peng 2012 | 一般圖 | \(1-\epsilon\) | \(O(\sqrt{m}\epsilon^{-2-O(1/\epsilon)}\log W)\) | 帶權 |
Berstein-Stein 2016 | 一般圖 | \(2/3-\epsilon\) | \(O(m^{1/4}\epsilon^{-2.5})\) | 帶權 |
- Gupta and Peng 2012. https://arxiv.org/pdf/1304.0378.pdf
- Berstein and Stein SODA 2016. https://aaronbernstein.cs.rutgers.edu/wp-content/uploads/sites/43/2018/12/SODA_2016.pdf
- Behnezhad and Khanna SODA 2022. https://arxiv.org/pdf/2201.02905v1.pdf
- Zoran Ivković & Errol L. Lloyd. https://link.springer.com/chapter/10.1007/3-540-57899-4_44
- Onak and Rubinfield, STOC 2010. Maintaining a Large Matching and a Small Vertex Cover
參考資料
- Ran Duan and Seth Pettie, Linear-Time Approximation for Maximum Weight Matching, JACM 2014.
Jack Edmonds, Path, Trees, and Flowers, Canadian Journal of Mathematics, 1965.
Jack Edmonds, Maximum Matching and a Polyhedron With 0,1-Vertices, Journal of Research of the National Bureau of Standards, Section B: Mathematics and Mathematical Physics, 1965.
C. Witzgall and C. T. Zahn Jr, Modification of Edmonds' Maximum Matching Algorithm, Journal of Research of the National Bureau of Standards, Section B: Mathematics and Mathematical Physics, 1965.
Balinski, M.L. (1969) Labelling to Obtain a Maximum Matching, in Combinatorial Mathematics and Its Applications. In: Bose, R.C. and Dowling, T.A., Eds., University of North Carolina Press, Chapel Hill, 585-602.
Harold N. Gabow, An Efficient Implementation of Edmonds' Algorithm for Maximum Matching on Graphs. (also in Gabow's 1974 PhD Thesis)
H. N. Gabow, Scaling algorithms for network problems, Journal of Computer and System Sciences, 31 (1985), pp. 148–168.
Ming-Yang Kao, Tak Wah Lam, Wing-Kin Sung, and Hing-Fung Ting. A Decomposition Theorem for Maximum Weight Bipartite Matchings. J, ACM 2001 and ESA 1999.
H. W. Kuan. The Hungarian method for the assignment problem, Naval Research Logistics Quarterly, 2 (1955), pp. 83–97.
M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms, Journal of the ACM, 34 (1987), pp. 596–615. FOCS 1984
H. N. Gabow and R. E. Tarjan, Faster scaling algorithms for network problems, SIAM Journal on Computing, 18 (1989), pp. 1013–1036. (also STOC 1988)
J. E. Hopcroft and R. M. Karp, An \(n^{5/2}\) algorithm for maximum matching in bipartite graphs, SIAM Journal on Computing, 2 (1973), pp. 225–231
T. Feder and R. Motwani, Clique partitions, graph compression and speeding-up algorithms, Journal of Computer and System Sciences, 51 (1995), pp. 261–272
Shimon Even, The Max Flow Algorithm of Dinic and Karzanov: An Exposition, 1976.